Optimizing PiB-PET SUVR change-over-time measurement by a large-scale analysis of longitudinal reliability, plausibility, separability, and correlation with MMSE
نویسندگان
چکیده
Quantitative measurements of change in β-amyloid load from Positron Emission Tomography (PET) images play a critical role in clinical trials and longitudinal observational studies of Alzheimer's disease. These measurements are strongly affected by methodological differences between implementations, including choice of reference region and use of partial volume correction, but there is a lack of consensus for an optimal method. Previous works have examined some relevant variables under varying criteria, but interactions between them prevent choosing a method via combined meta-analysis. In this work, we present a thorough comparison of methods to measure change in β-amyloid over time using Pittsburgh Compound B (PiB) PET imaging. METHODS We compare 1,024 different automated software pipeline implementations with varying methodological choices according to four quality metrics calculated over three-timepoint longitudinal trajectories of 129 subjects: reliability (straightness/variance); plausibility (lack of negative slopes); ability to predict accumulator/non-accumulator status from baseline value; and correlation between change in β-amyloid and change in Mini Mental State Exam (MMSE) scores. RESULTS AND CONCLUSION From this analysis, we show that an optimal longitudinal measure of β-amyloid from PiB should use a reference region that includes a combination of voxels in the supratentorial white matter and those in the whole cerebellum, measured using two-class partial volume correction in the voxel space of each subject's corresponding anatomical MR image.
منابع مشابه
Potential Clinical Value of Multiparametric PET in the Prediction of Alzheimer’s Disease Progression
OBJECTIVE To evaluate the potential clinical value of quantitative functional FDG PET and pathological amyloid-β PET with cerebrospinal fluid (CSF) biomarkers and clinical assessments in the prediction of Alzheimer's disease (AD) progression. METHODS We studied 82 subjects for up to 96 months (median = 84 months) in a longitudinal Alzheimer's Disease Neuroimaging Initiative (ADNI) project. Al...
متن کاملConsideration of optimal time window for Pittsburgh compound B PET summed uptake measurements.
UNLABELLED The standardized uptake value ratio (SUVR, or summed tissue ratio) has been used effectively in Pittsburgh compound B (PiB) PET studies to distinguish subjects who have significant amyloid-beta deposition in their brain from those who do not. Relative to quantitative measurements, advantages of the SUVR are improved study feasibility and low test-retest variation; disadvantages inclu...
متن کاملRelative equilibrium plot improves graphical analysis and allows bias correction of standardized uptake value ratio in quantitative 11C-PiB PET studies.
UNLABELLED Both the standardized uptake value ratio (SUVR) and the Logan plot result in biased distribution volume ratios (DVRs) in ligand-receptor dynamic PET studies. The objective of this study was to use a recently developed relative equilibrium-based graphical (RE) plot method to improve and simplify the 2 commonly used methods for quantification of (11)C-Pittsburgh compound B ((11)C-PiB) ...
متن کاملA randomized, exploratory molecular imaging study targeting amyloid β with a novel 8-OH quinoline in Alzheimer's disease: The PBT2-204 IMAGINE study
Introduction We are developing a second generation 8-OH quinoline (2-(dimethylamino) methyl-5, 7-dichloro-8-hydroxyquinoline [PBT2, Prana Biotechnology]) for targeting amyloid β (Aβ) in Alzheimer's disease (AD). In an earlier phase IIa, 3 month trial, PBT2 lowered cerebrospinal fluid Aβ by 13% and improved cognition (executive function) in a dose-related fashion in early AD. We, therefore, soug...
متن کاملRegional correlations between [11C]PIB PET and post-mortem burden of amyloid-beta pathology in a diverse neuropathological cohort
Imaging-pathological correlation studies show that in vivo amyloid-β (Aβ) positron emission tomography (PET) strongly predicts the presence of significant Aβ pathology at autopsy. We sought to determine whether regional PiB-PET uptake would improve sensitivity for amyloid detection in comparison with global measures (experiment 1), and to estimate the relative contributions of different Aβ aggr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 144 شماره
صفحات -
تاریخ انتشار 2017